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We show that there are no non-Boolean block-finite orthomodular posets possess- 
ing a unital set of  Jauch-Piron states. Thus, an orthomodular poset representing 
a quantum physical system must have infinitely many blocks. 

1. I N T R O D U C T I O N  AND P R E L I M I N A R I E S  

An event structure (so-called "quan tum logic") of  a quantum 
mechanical  system is commonly  assumed to be an or thomodular  poset  L. 
A state of  such a system is then interpreted as a probabil i ty measure on L. 
It turns out that the or thomodular  posets which may potentially serve as 
"logics" must have reasonably rich spaces of  states. Moreover,  the following 
condition on the state space appears  among the axioms of a quantum 
system: if q~ is a state on a logic L, and qb(a) = qb(b) = 1 for some a, b ~ L, 
then there is a c ~ L such that c -< a, c - b, and qb(c) = 1. Such a state is said 
to be a Jauch-Pi ron  state. I f  all states on L fulfil this condition, then L is 
called a Jauch-Pi ron logic. The condition was originally introduced by 
Jauch (1968) and Piron (1976). 

We investigate unital Jauch-Pi ron  logics with finitely many  blocks 
(maximal Boolean subalgebras).  We show that such a logic is always 
Boolean, i.e., it represents a purely classical system. In other words, an 
or thomodular  poset must have infinitely many blocks in order to describe 
a (nonclassical) quantum system. 

This generalizes the result of  Riittimann (1977) concerning finite Jauch-  
Piron or thomodular  lattices, and the result o f  Bunce et  al. (1985) for finite 
Jauch-Pi ron  logics (not necessarily lattices). On the other hand, there is a 
non-Boolean unital Jauch-Pi ron  logic whose blocks are finite (moreover,  
uniformly bounded) - -cons ide r  the set of  all projections on a Hilbert space 
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of dimension three. Thus, the theorem of Riit t imann cannot be weakened 
in this direction. 

Let us start by reviewing basis notions and facts [see, e.g., Ka lmbach  
(1984) and Pt~k and Pulmannov~ (1989) for details]. 

Definition 1.1. A logic is a partially ordered set L with a least and a 
greatest element 0, 1 together with an opera t ion '  (an or thocomplementat ion)  
such that the following conditions are satisfied for any a, b E L (the symbols 
v ,  ^ mean the lattice operations induced by ---): 

(i) ( a ' ) ' =  a. 
(ii) a -< b implies b' <- a'. 

(iii) a v a ' =  1. 
(iv) I f  a -< b', then a v b exists in L. 
(v) I f  a -< b, then b = a v (a '  ^ b) (the or thomodular  law). 

Definition 1.2. Let a and b be in a logic L. They are said to be orthogonal 
(in symbols, a_kb) if a <- b', and they are said to be compatible (in symbols, 
a~-~b) if a = c v e and b = d v e, where c, d, e E L are mutually orthogonal.  
An element a E L is called central if a is compatible with every b E L. The 
set of  all central elements of  L is called the center of L and will be denoted 
by C (L). I f  C (L) = {0, 1}, we say that L has a trivial center. Let a, b E L, a -< b. 
Then the interval [a, b]L in L is defined as [a, b]L = {x EL] a -< x -< b}. (The 
subscript is omitted if this does not cause any misunderstanding.) 

It  is a well-known fact (Ptfik and Pulmannovfi, 1989) that a logic L is 
a Boolean algebra if and only if every pair  of  its elements is compatible. 

Definition 1.3. A block of a logic L is a maximal  Boolean subalgebra 
of  L. A logic L is said to be block-finite if the system of  all blocks of  L is finite. 

Block-finite logics were thoroughly studied by Bruns and Greechie 
(1982a, b). 

Definition 1.4. Let K, L be logics and let f :  K ~ L be a mapping.  Then 
f is called a logic morphism if  the following conditions hold true: 

(i) f (0 )  = 0. 
(ii) f (a ')  = f ( a ) '  for any a E K. 

(iii) f ( a  v b) = f ( a )  v f ( b )  whenever a, b E K are orthogonal. 

Definition 1.5. A state on a logic L is a mapping  ~P: L ~  (0, 1) such that: 
(i) O ( 1 ) =  1. 

(ii) I f  a, bE L and a.l_b, then O(a v b) = ~ ( a ) + O ( b ) .  

Let us denote by 5P(L) the set ofalI  states on L (called the "state space").  
The set O~ is naturally endowed with a topological and convex 

structure (as a subset of  (0, 1)L). In fact, we have the following result. 
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Proposition 1.6 (see Shultz, 1974). State spaces are (up to affine homeo-  
morphisms)  exactly compac t  convex subsets in locally convex topological  
l inear spaces. 

We shall need the fol lowing simple proper ty  o f  state spaces described 
first by Godowsk i  (1982). 

Proposition 1.7. Let K, L be logics and f :  K ~ L a logic morphism.  
(i) I f  �9 ~ re(L),  then ~ o f ~  bY(K). 

(ii) Suppose  fur ther  that  f ( a )  ~->f(b) implies a ~ b. I f  dps 6e(K) such 
that  qb(x) = 0 whenever  f ( x ) =  0, then the mapp ing  ~ :  L o  (0, 1) defined by 
�9 ( f (a ) )  = dp(a) is a state on L. 

Proof (i) Let ~ ~ re(L) and  put  dp= qt of  N o w  qb (1) = ~t'(f( 1 )) = �9 (1) = 
1. I f  a, b ~ K, a_l_b, then f ( a ) •  and 

dp(a v b) = ~ ( f ( a  v b)) = ~ ( f ( a )  v f ( b ) )  

= ~ ( f ( a ) )  + ~ ( f ( b ) )  = dg(a) + cb(b) 

Hence  qb ~ 5e(K). (ii) First we must  prove that �9 is proper ly  defined. Let 
a, b ~ K such t h a t f ( a )  = f ( b ) .  Then  a ~ b and there are mutual ly  or thogonal  
elements e, d, e e  K such that  a = c v e, b = d v e. N o w  f ( e ) , f ( d ) , f ( e )  are 
mutual ly  or thogonal  elements in L and f ( c ) v f ( e ) = f ( a ) = f ( b ) = f ( d ) v  
f (e ) .  Hence  f ( c )  = 0 = f ( d ) ,  ~ ( e )  = 0 = ~ ( d ) ,  and ~b(a) = ~b(e) = qb(b). N o w  
we can show that �9 is a state on L. We have ~ ( 1 ) = g t ( f ( 1 ) ) = q b ( 1 ) =  1. 
Let f ( a ) , f ( b )  ~ L such that f(a)_l_f(b). Then  a~-~b,f(a ^ b) = O,f(a ^ b') = 
f ( a ) ,  and  f ( a '  ^ b) = f ( b ) .  Since (a ^ b')_l_(a' ^ b), we get 

q t ( f (a )  v f ( b ) ) =  ~ ( f ( a  ^ b') v f ( a '  ^ b)) = ~ ( f ( ( a  ^ b') v (a' ^ b))) 

= d~((a ^ b') v (a' ^ b)) = ~ ( a  ^ b') + cb(a' ^ b) 

= ~ ( f ( a  ^ b ' ) ) + ~ ( f ( a '  ^ b ) ) = ~ ( f ( a ) ) + ~ ( f ( b ) )  [] 

2. BLOCK-FINITE L O G I C S  

In  this section we in t roduce our  notat ion for block-finite logics and 
prove some helpful lemmas.  

Let L be a block-finite logic. Let ~ = {B1, B~, . . . ,  B~} be the set o f  all 
blocks o f  L. Denote  ~ (L)  = { C = A1 n A2 ~ �9 �9 �9 n An ]Ai = Bi or A; = L -  Bi 
for  i = 1, 2 , . . . ,  n}. Then C(L)  c ~(L)  and each x c L is an element o f  just 
one set o f  ~(L) .  For  each C ~ ~(L)  put  

Dc = { x ~  C [ ( y c L ,  y ~ O , y < < - x ) ~ y ~  C} 

We call a (finite or  infinite) sequence al -> a2 -> a3 ->" �9 �9 in L down-changing 
if a~ ~ C [ C  ~ ~ ( L ) ]  implies ai+ 1 ~ C for each i = 1, 2, 3 , . . . .  For  every b ~ L 
we denote  Eb = {g c L I g-< b and g ~ [._Jc~(L~Dc}. We call the elements o f  
Eb bottom elements (for  b). 



440 Rogalewicz 

Lemma 2.1. Let L be a block-finite logic, a, b, x e L, a, b e C for  some 
C e  ~(L) .  Then  x<-->a if and  only ifx~-~.b. 

The p r o o f  o f  L e m m a  2.1 is s traightforward.  

Lemma 2.2. The set De(L) forms an ideal, i.e.: 
(i) I f  x e De(L), y e L, y <- x, then y e DC(L). 

(ii) I f  x, y e De(L), then x v y e De(L). 

Proof Part  (i) is guaranteed  by the definition. (ii) I f  x, y e DC(L), then 
x v y exists and belongs to C(L) .  Let z ~ L, z - x v y. We put  zl = z ^ x, z2 = 
Z ^ y A X ' .  N o w  zl, z2eDc(L) and thus z = z ~ v  z2 is a central  element.  �9 

Lemma 2.3. Let L be a block-finite logic. Then  each down-chang ing  
sequence in L is finite. 

Proof Suppose,  in contradict ion,  that  there is an infinite down-  
changing sequence al>-a2>-a3>_ . . .  in L. Then  there are C~, Ca e ~ ( L )  
such that  each of  them contains  an infinite subsequence  o f  a~ - a2 >- a3 --- �9 �9 ". 
Take a subsequence  b~ ~ b 2 -  b3 ~"  �9 �9 of  al --> a2 -- a3 -->" " �9 such that  b2k-~ e 
C,~, b2k e C a for  k = 1, 2, 3 , . . . .  There are blocks B~, B~ in L such that  
B,  f') C ,  = Q,  B a n C ,  = C , ,  B ,  c~ C~ = C a = B a c~ C a (if necessary, we inter- 
change the roles o f  C~ and  Ca). N o w  Navara  and Rogalewicz (1991), 
Proposi t ion  5.7 implies that  the fol lowing blocks exist in L: 

B2 = [0, b2]B~ x [0, b~]B,, 

B4 = [0, b,]B, x [0, b~]Be, 

B6 = [0, b6]Bo x [ 0 ,  b~]R~, etc. 

We have b2~_l~B2k for  k ~ i  and b2~_leB2k for  k < i .  Thus,  we have 
const ructed  an infinite sequence o f  different blocks in L, which is in a 
contradic t ion with its block-finiteness. �9 

Corollary 2.4. Let L be a block-finite logic. I f  b e L, b # 0, then there 
is a bo t tom element c e Eb, e ~: O. 

3. J A U C H - P I R O N  L O G I C S  

Definition 3.1. A state dp on a logic L is said to be a Jauch-Piron state 
if the fol lowing implicat ion is satisfied: if dp(a) = 1 = alp(b) for  a, b e L, then 
there is c e  L such that  c<= a, c < b, and qb(c) = 1. 

Definition 3.2. (i) A logic L is called a Jauch-Piron logic if every state 
on L is a J a u c h - P i r o n  state. 

(ii) A logic L is said to be unital if, for  each a ~ L, a # 0, there is a 
r e ~ ( L )  with ~P(a) = 1. 

The fol lowing three theorems be long to the main  results o f  Bunce et 
al. (1985), where the proofs  can be found.  Let us only notice that  Theorem 
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3.3 is an easy consequence of  Proposition 1.7, and the p roof  of  Theorem 
3.4 follows immediately from the description of  states on a product  of  logics 
(Mafiasov~i and Pt~ik, 1981). The p roof  of  Theorem 3.5 is quite nontrivial. 
The geometry of  the state space (its convex structure) is widely utilized. 
The theorem was first proved by Riitt imann (1977) for logics which are 
lattices, and then generalized for all finite logics (and a little simplified) in 
Bunce et al. (1985). 

Theorem 3.3. Let f be a logic morphism of  K onto L, where iK is a 
Jauch-Pi ron  logic. Then L is also a Jauch-Pi ron  logic. 

Theorem 3.4. Let {L~ [a c I} be a family of  (unital) logics. Let I be a 
set whose cardinal is not real-measurable. Then L = r I ~ I  L,  is a (unital) 
Jauch-Pi ron  logic if and only if L~ is a (unital) Jauch-Pi ron logic for 
every a 6 L 

Theorem 3.5. Let L be a finite unital Jauch-Pi ron  logic. Then L is a 
Boolean algebra. 

Now we are ready to prove our main result. We start with a lemma. 

Lernma 3.6. Let L be a block-finite unital Jauch-Pi ron  logic, a ~ L. 
Then all bot tom elements for a are central. 

Proof We divide the proof  into two steps. First, we prove that the 
assumptions of  the theorem imply that card Dc-< 1 for all C ~  ~(L),  
C ~ C(L) .  Second, we shall prove that Dc = • if  C ~ C(L) .  Before starting 
with Step 1, let us notice a tiny observation: I f  C1, C2~ ~(L) ,  C1 ~ (72, and 
c*-~d for some c ~ Dc,,  d ~ Dc2, then c_Ld. This follows from the fact that 
for e = c A d  we have e -<c , e -<d ,  and thus either e = 0  or e ~ D c ,  n D c , .  
Since Dc, n Dc2 = Q, we get cJ_d. 

Step 1. Suppose that there is Ca ~ ~(L) ,  Ca ~ C(L) ,  and a, b ~ Dco, 
a ~ b. We can assume a_Lb. (Since a, b e  Ca, we have a<--~b. Let us write 
a = c v  e, b = d v  e for c,d, e c L ,  c_Ld, c_Le, d_Le. Now c<-a, d<-b, e<-b, 
and a, b ~ Dco, which implies that c, d, e ~ Dca. At least two of them are 
different from zero and we take them for a, b.) Then there exists d ~ L, 
d ~ a, d ~ Dc~ for some Ca ~ ~(L).  

The proof  of  this seems to require the compactness of  the state space 
(Proposition 1.6). Since Ca # C(L) ,  there exists d ~ L, d,C-~a. We denote Cd 
the class in ~(L)  containing d. Due to Lemma 2.3, we can assume that d 
is chosen such that u ~ a for every u <- d, u ~ Ca. Suppose that d is not a 
bot tom element. For each C ~ ~(L)  we denote Ac  = Ed n C. We shall show 
that for each C c ~(L)  there is ~ Y~(L) such that ~F(d)= 1, ~ ( a ) = 0 ,  
and qS(u )=0  whenever u ~ A c .  For every u ~ A c  we denote ~e , (L)= 
{ ~ S e ( L ) l d ~ ( u ) = O ,  qb(a )=0 ,  qb(d)= 1}. Since u < - d , u # d ,  there exists 
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v e E a ,  v •  and because  vC:Ca and v , ~ a ,  also v_La. I f  r  then 
dpe fie,(L). Thus,  fie,(L) is a nonvoid  closed subset o f  the compac t  space 
fie(L). I f  u, v ~ A c ,  then u v v ~ A c  and f ie ,~(L)  _C fie,(L) n 5r Hence  
(-'l,~A~ b~ # Q. This proves the existence o f  ~ .  

We construct  such a state for  each C ~ $ ( L )  with A c  ~ f~, and  denote  
p them ~1 ,  ~ 2 , . . . ,  ~p .  N o w  let �9 = ( I / p )  Y~i=~ ~ .  We have ~ ( a ' )  = 1 and 

�9 (d)  = 1. I f  u <- d, u ~ Cd, then there is v ~ Ed, v <- d ^ u'. We have ~ ( v )  = 0 
for  some i e {1, 2 . . . .  , p}, and therefore ~ ( v )  <- ( p -  1)/p.  By the J a u c h -  
Piron proper ty ,  there exists e e L such that  e <-- d, e --- a ' ,  and ~ ( e )  = 1. Since 
a ' ,~,  d, it follows that  e r Cal. This is a contradic t ion with the former  result. 
Thus,  d is a bo t tom element,  i.e., d ~ Dc~. 

Recall  that  we have a, b ~ D c , ,  a •  and d ~ Dc~, d , ~  a. Let ape 9~ 
such that  qb (d )=  1. Deno te  ~ ( a ) = A ,  qb(b)=  B. We have A, B e { 0 ,  1}. [ I f  
qb(a) = 1, then,  f rom the J a u c h - P i r o n  proper ty ,  there is x ~  L such that  
x - a, x - d, and ~ ( x )  = 1. On  the other  hand,  a ~ Dco, d ~ Dc~, Ca ~ Ca, 
and hence the only element  under  a and d is 0 - - a  contradict ion.  A similar 
a rgument  can be repeated  for  a ' ,  b, and b'.] Define a mapp ing  ~ :  L ~  (0, 1) 
as follows: 

(i) I f  x ~ ,  a, then ~ ( x )  = C~(x). 
(ii) I f  x ,~, a, then x = xo v xb v x~ for  xo <- a, Xb ~ b , Xl <- ( a v b ) ', and 

we put  

A + B  
,I,(x) = , I , (xD + �9 ~(xo)  

A 

We claim that  �9 is a state on L. Since ~ ( 1 ) =  1, we must  prove that  
�9 (e v g) = ~ ( e )  + ~ ( g )  for  any e, g e L, e_Lg. I f  e, g, and  e v g are all compat -  
ible with a, or  all noncompa t ib le  with a, then this equali ty is s traightforward.  
Suppose  e , o a ,  geS, a. Then either e •  and ~ ( e v g ) = ~ ( e v g ) =  
~ b ( e ) + ~ ( g )  = ~ ( e )  + ~ ( g ) ,  or  there is el -< e, el-< a v b, el r O. In  that  case 
el c Dco and  as el -< e v g, we get e~ ~ e v g. Consequent ly ,  e v g ~ a and 
also g ~ a, a contradict ion.  Suppose  finally that  e v g ~ a, while e r  a, g - ~  a. 
Then  a-< e v g. Indeed,  if there is al<- a, al ~ O, a l •  v g, then a~,• It 
follows that  a~*--~e, and,  as a l c  Dco, also a**  e, inconsistently with the 
assumption.  We have shown that  �9 is a state on L. 

N o w  we have ~ ( d )  = 1 = ~ ( b ' ) .  Since d C ,  b' and also xqS, b ' for  every 
x <- d, x ~ O, this is a cont radic t ion  with the J a u c h - P i r o n  property.  We have 
proved  that  card D c  -< 1 provided  C ~ C ( L ) .  

Step 2. Let ~ = { D c  I C e $ ( L ) ,  card D c  = 1} = {D~, D 2 , . . .  , Dq}. 

Denote  by di the (only) element o f  D ~ , i = l , 2  . . . . .  q, and E =  
{dl,  d2 . . . .  , dq}. Let ~ = {B~, B2 . . . .  , Bn} be the set o f  all blocks o f  L. For  
each Bi ~ ~ we denote  b~ = v (B~ c~ E) .  I f  bk <--> bl for  k # l, and bk ~ bt, then 
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there is a ~ E such tha t  a <- b k and a• (if  necessary,  we in terchange the 
roles of  bk and bt). By the uni tal i ty  o f  L, there exists ~ ~ 5e(L) with qb(a) = 1. 
For  this state we have cb(bk) = 1 = ~(b~),  bu t  the only e lement  of  L unde r  
bo th  bk and  b~ is O - - a  cont radic t ion  with the J a u c h - P i r o n  proper ty .  It  
fol lows that  bk = bl. 

We want  to p rove  that  bl = b2 . . . . .  bn. It  suffices to show that  bi ~ bj 
for  all i , j  ~ {1, 2 , . . . ,  n}. Suppose ,  in contradic t ion,  that  bk'r bt for  some  
k, I. Not ice  that  this a s sumpt ion  implies that  any  lower  b o u n d  a E L of  
{b~, b ~ , . . . ,  b',} is different f rom b~ for  each  i =  1, 2 , . . . ,  n. Let A be the 
set o f  all lower  bounds  o f  {b~, b ~ , . . . ,  b ' }  in L fulfilling the fol lowing 
condi t ion:  let al ~ A and  let a2 be a lower  b o u n d  of  {b~, b ~ , . . . ,  b ' }  such 
that  al--- a2 ; then {a~, a2} c C for  some C ~ ~ (L) .  Due  to L e m m a  2.3, for  
each lower  b o u n d  as ~ L of{b~,  b ~ , . . . ,  b'n} there is a2 ~ A, a2 - a~. For  each  
C ~ ~ ( L )  we denote  A c  = A n C. We utilize again  the compac tness  o f  5~(L) 
to p rove  that ,  for  each C ~ ~ (L) ,  there is �9 ~ 5r such that  ~ ( b ~ ) =  1, 
i = 1, 2 , . . . ,  n, and  q~(c) = 0 for  every c ~ Dc(L) u Ac .  

Realize,  first, that  a ' ^ b ' k ~ , a ' ^ b l  for  each  a ~ A .  For  each c~Dc(L)  
and a ~ A c  [ C ~ ~ (L) ] we denote  5ec, o (L) = { qb ~ 5r [ qb (c) = 0, �9 ( a )  = 0, 
and  qb(b l )=  1, i =  1 , 2 , . . . ,  n}. I f  c~ Dc(L> and a c A c ,  then  there is c ~  
Dc(L), c~ ~ 0, c~Zc v a, and  there  exists qb ~ 5e(L) with qb(Cx) = 1. We have  
qb6 5Q, (L) ,  and  thus 5Q , (L )  is a nonvo id  closed subset  o f  5g(L). I f  cl ,  c2c 
Dc(L) and al, a2 ~ Ac ,  then  c~ v c2 ~ Dc(t~, al v a 2 G Ac ,  and  0~ . . . . . . . . .  ~(L) C_ 
5~ .... (L )c~5~ ,~(L) .  H e n c e  (~(c,a)~Dc(L)• ~c,a(L)#~. This proves  the 
existence o f  q~ ~ 5~(L) with ~ ( b l )  = 1 for  i = 1, 2 , . . . ,  n, and  ~ ( c )  = 0 for  
every e ~ Dc(r) ~ A o  

We const ruct  such a state for  each C ~ ~ ( L )  with A c  ~ ;~, denote  them 
�9 ~, ~ , . . . ,  ~ p ,  and pu t  �9 = ( l / p )  Yf=~ 'Pp. We have ~(b~)  = 1 for  j = 
1 , 2 , . . . ,  n. I f  a l ~  L is a lower  bound  o f  {b'~, b ~ , . . . ,  b '} ,  then there is 
C ~ ~ ( L )  and  a~ ~ A c  such that  a2 ~ a l .  I f  ~ ~ {qb~, (I) 2 . . . .  , qbp} is the state 
co r respond ing  to C, then  qb(a~) = qb(a2) = 0 and  thus ~(a~) <- (p - 1)/p < 1. 
On the o ther  hand,  the J a u c h - P i r o n  p rope r ty  implies  that  there is a a ~ L 
such that  a -< b~ for  each  j = 1, 2 , . . . ,  n, and  ~ ( a )  = 1 - - a  contradic t ion.  

We p roved  that  b~ ~ b~ for  each i , j  ~ {1, 2 , . . . ,  n} and  therefore  bl = b~ = 
. . . .  b,  = b. Hence  b ~ C(L)  and we can write L = [0, b] x [0, b'].  It  fol lows 
f rom T h e o r e m  3.4 that  [0, b] and  [0, b ' ]  are bo th  J a u c h - P i r o n  unital  logics. 
But [0, b] being finite, it is Boolean  by T h e o r e m  3.5. As there are no contral  
a toms  in [0, b],  we have  [0, b] = {0} and L = [0, b'].  �9 

Theorem 3. 7. Let L be a block-finite unital  J a u c h - P i r o n  logic. Then  L 
is a Boolean  algebra.  

Proof Let us suppose  that  L is not  Boolean.  Define a relat ion ~ on L 
as follows: a ~ b if  and  only if there are c ~ L and  d, e ~ Dc(L) such that  
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a = c v d, b = c v e. The relat ion - is obviously  symmetr ic  and  reflexive. We 
show that  it is also transitive, and thus - is an equivalence on L. Suppose  
that  a - b and b -  c. There  are d, e e L and al, bl, b2, c2 ~ DC(L) such that  
a = d  v al, b = d  v b l=e v b2, c=e  v c2. Put f =(d A b2)v al, g = ( e  A bOv 
c2. We have f, g ~ DC(L~ (Lemma  2.2) and a = (d A e) v f, c = (d ^ e) v g, 
hence  a - c. 

We denote  by P the quotient  set L / ~ .  We endow P with the 
o r thocomplementa t ion  and the ordering inheri ted f rom L, i.e., if [a ] ,  [b]  ~ P, 
then [a ]  = [ b ] ' ( [ a ]  -< [b] ,  resp.) if there are a l ,  bl ~ L, al ~ [a ] ,  bl e [b]  with 
a I ----- b~ (al  --- bl,  resp.). I t  is a routine p rocedure  to check that  P is a logic. 
We denote  by f the canonica l  logic morph i sm f rom L onto  P. 

We shall prove that  f preserves the relat ion o f  compatibil i ty,  i.e., if 
a, b ~ L, then l o b  (in L) if and only i f f ( a ) ~ f ( b )  (in P) .  Suppose  that  
a ~ b .  We can write a = c v e ,  b = d v e  for  c ,d , e~L , c •177177  We 

have f ( c ) •177177  a n d f ( a )  = f ( c )  v f ( e ) , f (b )  = f ( d )  v 
f (e) ,  i . e . , f  (a)  ~--~f(b). To prove the reverse implicat ion,  s u p p o s e f ( a )  ++f(b). 
There are mutual ly  o r thogona l  elements f ( c ) ,  f ( d ) ,  f ( e )  ~ P such that  f ( a )  = 
f (c)  v f ( e ) ,  f ( b ) = f ( d ) v f ( e ) .  Further,  there are mutual ly  o r thogona l  ele- 
ments  Cl, dl ,  el e L such that  f ( c l )  = f ( c ) ,  f (dO = f ( d ) ,  and f ( e l )  = f ( e ) .  We 
have Cl v e l ~  dl v e~, and,  moreover ,  

(a  ^ (cl v el) '  ) V ( a ' A  (C 1 V el) ) v (b ^ (dl v el) '  ) 

v (b 'A ( d l  v el)) c DC(L) 

Hence  a ~ b. 
This result ensures that  the system ~ ( P )  is i somorphic  to the system 

~(L) .  More  exactly, f (a) ,  f (b)  are both  elements o f  some Cv ~ ~(P) if and 
only if a, b are both  elements o f  some CL ~ ~(L). Moreover ,  if a ~ DC(L), 
then f (a)  = 0. Thus,  there are no central bo t t om elements in P. 

N o w  we shall prove that  P is unital. Let f ( a ) c  P, f (a)SO.  Denote  
La = {x ~ L I f ( a )  -<f(x)}.  Let c, d ~ La. We show that  there is z ~ La, z --- c, z -< 
d. Suppose  first that  f ( c )= f (a ) .  Then f ( c ) < - f ( d ) ,  hence  c,,-~d and there 
are mutual ly  o r thogona l  elements c~, d~, e e L such that  c = Cl v e, d = d I v e. 
N o w  also f (cO• f (cl)•  f (d l )•  and f ( c ) = f ( c l ) v f ( e ) ,  
f(d) =f(d0 v f ( e ) .  Since f (c)  <-f(d), we get f ( c l )  = 0. Thus,  f ( c  ^ d) = 
f(c)  = f ( a )  and c ^ d ~ La. Let now c, d ~ L~ be arbitrary. We have c ^ a e La 
and f ( c  ^ a) = f ( a ) ;  hence  also z = (c ^ a)  A d ~ L, .  

For  every c ~ L,  denote  5~(L) = {~ ~ 5P(L)]gp(c) = 1}. Obviously,  for  
every c ~ La, 5e~(L) is a n o n e m p t y  closed subset o f  b~ Further,  if c~, c2 
L~, then there is c ~ L, ,  c -< cl, c-< c2, and 5r C 5~ f3 5~ Due  to 
the compactness  o f  O~ there is qb ~ ('-'I~L, 5r N o w  q~(c) = 1 for  every 
c e L~, part icularly dp(a) = 1 and ~ ( x )  = 1 for  every x e L such that  f ( x )  --- 1. 
Accord ing  to Proposi t ion  1.7, there exists a state �9 ~ 5e(p) with ~( f (a ) )  = 1. 
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We have shown that P is unital and block-finite. According to Theorem 
3.3, P is a Jauch-Piron logic. Hence,  by Lemma 3.6, all bottom elements 
in P should be central. But we have shown that there are no nonzero central 
bottom elements in P - - a  contradiction. The proof  is finished, i 
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